80,755 research outputs found

    Stochastic Dynamics of Electrical Membrane with Voltage-Dependent Ion Channel Fluctuations

    Full text link
    Brownian ratchet like stochastic theory for the electrochemical membrane system of Hodgkin-Huxley (HH) is developed. The system is characterized by a continuous variable Qm(t)Q_m(t), representing mobile membrane charge density, and a discrete variable KtK_t representing ion channel conformational dynamics. A Nernst-Planck-Nyquist-Johnson type equilibrium is obtained when multiple conducting ions have a common reversal potential. Detailed balance yields a previously unknown relation between the channel switching rates and membrane capacitance, bypassing Eyring-type explicit treatment of gating charge kinetics. From a molecular structural standpoint, membrane charge QmQ_m is a more natural dynamic variable than potential VmV_m; our formalism treats QmQ_m-dependent conformational transition rates Ξ»ij\lambda_{ij} as intrinsic parameters. Therefore in principle, Ξ»ij\lambda_{ij} vs. VmV_m is experimental protocol dependent,e.g., different from voltage or charge clamping measurements. For constant membrane capacitance per unit area CmC_m and neglecting membrane potential induced by gating charges, Vm=Qm/CmV_m=Q_m/C_m, and HH's formalism is recovered. The presence of two types of ions, with different channels and reversal potentials, gives rise to a nonequilibrium steady state with positive entropy production epe_p. For rapidly fluctuating channels, an expression for epe_p is obtained.Comment: 8 pages, two figure

    Angular Momentum of Phonons and Einstein-de Haas Effect

    Full text link
    We study angular momentum of phonons in a magnetic crystal. In the presence of a spin-phonon interaction, we obtain a nonzero angular momentum of phonons, which is an odd function of magnetization. At zero temperature, phonon has a zero-point angular momentum besides a zero-point energy. With increasing temperature, the total phonon angular momentum diminishes and approaches to zero in the classical limit. The nonzero phonon angular momentum can have a significant impact on the Einstein-de Haas effect. To obtain the change of angular momentum of electrons, the change of phonon angular momentum needs to be subtracted from the opposite change of lattice angular momentum. Furthermore, the finding of phonon angular momentum gives a potential method to study the spin-phonon interaction. Possible experiments on phonon angular momentum are also discussed.Comment: Accepted by Phys. Rev. Lett. Detailed supplementary file is include
    • …
    corecore